点击化学铜离子配体THPTA
THPTA (tris-hydroxypropyltriazolylmethylamine)
-
产品编号: 1010-100
-
相关CAS号:760952-88-3
-
分子式:760952-88-3
-
分子量:434.50
背景介绍
THPTA(tris-hydroxypropyltriazolylmethylamine)是水溶性的,第一代点击化学反应催化剂配体。THPTA和Cu+络合,大大提高了Cu+在溶液中的稳定性,从而降低了铜离子用量,提高了反应效率。另外,THPTA中的三唑(triazole)结构具有抗氧化作用,保护反应物免受Cu2+氧化破坏。THPTA大大简化了点击化学反应,从而让点击化学标记反应可以在水溶液中,在低浓度条件下,在生理环境中快速高效的进行。
THPTA(三羟丙基三唑基甲胺)是一种水溶性、非常有效的加速配体,用于铜催化的炔烃-叠氮化物点击化学反应 (CuAAC)。 除了大大提高 CuAAC 的速率外,THPTA 还最大限度地减少了对所探测细胞或生物体生理状态的干扰,并通过进一步降低催化剂配方中的 Cu 负载量来实现有效的生物偶联,同时抑制细胞毒性。 水溶性 THPTA 配体通过允许整个反应在水中进行,进一步简化了点击化学反应。
产品参数
产品结构
1. Leach, R. W., et al. (2021). Activity-based RNA-modifying enzyme probing reveals DUS3L-mediated dihydrouridylation. Nat Chem Biol., 17 (11), 1178-1187. [PubMed]
2. Kang, D., et al. (2021). Bioorthogonal Retro-Cope Elimination Reaction of N, N-Dialkylhydroxylamines and Strained Alkynes. J Am Chem Soc., 143 (15), 5616-5621. [PubMed]
3. Bazrafshan, A. et al. (2021). DNA Gold Nanoparticle Motors Demonstrate Processive Motion with Bursts of Speed Up to 50 nm Per Second. ACS Publications, Online ahead of print. [PubMed]
4. Baskin, J. A., et al. (2021). A chemoproteomics approach to profile phospholipase D-derived phosphatidyl alcohol interactions. Cambridge: Cambridge Open Engage, This content is a preprint and has not been peer-reviewed. [ChemRxiv.]
5. Batrouni, A. G., et al. (2021). A palmitoylation code controls PI4KIIIα complex formation and PI(4,5)P2 homeostasis at the plasma membrane bioRxiv, This content is a preprint and has not been peer-reviewed. [bioRxiv]
6. Feng, S., et al. (2021). Combining Metabolic Alkyne Labeling and Click Chemistry for Secretome Analysis of Serum-Containing Conditioned Medium†. Chin. J. Chem., 39, 1843-1848. [Wiley Online Library]
7. Willems, L. I., et al. (2020). Tandem Bioorthogonal Labeling Uncovers Endogenous Cotranslationally O-GlcNAc Modified Nascent Proteins. J Am Chem Soc., 142 (37), 15729-15739. [PubMed]
8. Daughtry, J. L., et al. (2020). Clickable Galactose Analogues for Imaging Glycans in Developing Zebrafish. ACS Chem Biol., 15 (2), 318-324. [PubMed]
9. Tong, M., et al. (2020). Effective Method for Accurate and Sensitive Quantitation of Rapid Changes of Newly Synthesized Proteins. Anal. Chem., 92(14), 10048-57. [PubMed]
10. Buch-Larsen, S. C., et al. (2021). Chemical genetics and proteome-wide site mapping reveal cysteine MARylation by PARP-7 on immune-relevant protein targets. Elife, 10, e60480. [PubMed]